2022年12月30日
收敛级数是柯西于1821年引进的,它是指部分和序列的极限存在的级数。
收敛级数分条件收敛级数和绝对收敛级数两大类,其性质与有限和相比有本质的差别,例如交换律和结合律对它不一定成立。
收敛级数的基本性质主要有:级数的每一项同乘一个不为零的常数后,它的收敛性不变;
两个收敛级数逐项相加或逐项相减之后仍为收敛级数;
在级数前面加上有限项,不会改变级数的收敛性;
原级数收敛,对此级数的项任意加括号后所得的级数依然收敛;
级数收敛的必要条件为级数通项的极限为0。
关于我们|免责条款|版权声明|侵权举报|隐私政策|联系我们
Copyright © 2025 IZhiDa.com All Rights Reserved.
知答 版权所有 粤ICP备2023042255号